
Efficiency and Accuracy Issues for
Sampling vs. Counting Modes of

Performance Monitoring Hardware
Shirley Moore,

University of Tennessee-Knoxville
Patricia Teller and Michael Maxwell,

University of Texas-El Paso

Austin, TX

June 10-14, 2002 DoD HPC Users Group Conference 2

Outline

• Background
• PAPI
• Examples of counting and sampling modes
• Accuracy Issues
• Overhead Issues
• Implications for PAPI
• Microbenchmark results and future work

June 10-14, 2002 DoD HPC Users Group Conference 3

Performance Monitoring Hardware

• Available on most modern microprocessors
• Consists of registers that record data about the

processor’s function
– Event counts
– Data and instruction addresses for an event
– Pipeline or memory latencies

• Control registers for configuration and control
• Data useful for performance modeling, analysis,

and tuning

June 10-14, 2002 DoD HPC Users Group Conference 4

Overview of PAPI
• Performance Application Programming

Interface
• The purpose of the PAPI project is to

design, standardize and implement a
portable and efficient API to access the
hardware performance monitor counters
found on most modern microprocessors.

• Parallel Tools Consortium project
http://www.ptools.org/

June 10-14, 2002 DoD HPC Users Group Conference 5

PAPI Counter Interfaces

• PAPI provides three interfaces to the
underlying counter hardware:
1. The low level interface manages hardware

events in user defined groups called EventSets.
2. The high level interface simply provides the

ability to start, stop and read the counters for a
specified list of events.

3. Graphical tools to visualize information.

June 10-14, 2002 DoD HPC Users Group Conference 6

PAPI Implementation
Tools!

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension

PAPI Machine
Dependent SubstrateMachine

Specific
Layer

Portable
Layer

June 10-14, 2002 DoD HPC Users Group Conference 7

PAPI Preset Events

• Proposed standard set of events deemed
most relevant for application performance
tuning

• Defined in papiStdEventDefs.h
• Mapped to native events on a given

platform
– Run tests/avail to see list of PAPI preset events

available on a platform

June 10-14, 2002 DoD HPC Users Group Conference 8

High-level Interface

• Meant for application programmers wanting
coarse-grained measurements

• Not thread safe
• Calls the lower level API
• Allows only PAPI preset events
• Easier to use and less setup (additional

code) than low-level

June 10-14, 2002 DoD HPC Users Group Conference 9

High-level API
• Fortran interface

PAPIF_start_counters
PAPIF_read_counters
PAPIF_stop_counters
PAPIF_accum_counters
PAPIF_num_counters
PAPIF_flops

• C interface
PAPI_start_counters
PAPI_read_counters
PAPI_stop_counters
PAPI_accum_counters
PAPI_num_counters
PAPI_flops

June 10-14, 2002 DoD HPC Users Group Conference 10

Low-level Interface
• Increased efficiency and functionality over the

high level PAPI interface
• Manages events in EventSets
• About 40 functions
• Obtain information about the executable and the

hardware
• Thread-safe
• Fully programmable
• Callbacks on counter overflow
• Counter multiplexing

June 10-14, 2002 DoD HPC Users Group Conference 11

Event set Operations

• Event set management
PAPI_create_eventset, PAPI_add_event[s],
PAPI_rem_event[s], PAPI_destroy_eventset

• Event set control
PAPI_start, PAPI_stop, PAPI_read,
PAPI_accum

• Event set inquiry
PAPI_query_event, PAPI_list_events,...

June 10-14, 2002 DoD HPC Users Group Conference 12

Callbacks on Counter Overflow

• PAPI provides the ability to call user-
defined handlers when a specified event
exceeds a specified threshold.

• For systems that do not support counter
overflow at the OS level, PAPI sets up a
high resolution interval timer and installs a
timer interrupt handler.

June 10-14, 2002 DoD HPC Users Group Conference 13

PAPI_overflow

• int PAPI_overflow(int EventSet, int
EventCode, int threshold, int flags,
PAPI_overflow_handler_t handler)

• Sets up an EventSet such that when it is
PAPI_start()’d, it begins to register
overflows

• The EventSet may contain multiple events,
but only one may be an overflow trigger.

June 10-14, 2002 DoD HPC Users Group Conference 14

Statistical Profiling

• PAPI provides support for execution
profiling based on any counter event.

• PAPI_profil() creates a histogram of
overflow counts for a specified region of the
application code.

June 10-14, 2002 DoD HPC Users Group Conference 15

PAPI_profil
int PAPI_profil(unsigned short *buf, unsigned int
bufsiz, unsigned long offset, unsigned scale, int
EventSet, int EventCode, int threshold, int flags)

•buf – buffer of bufsiz bytes in which the histogram
counts are stored

•offset – start address of the region to be profiled

•scale – contraction factor that indicates how much
smaller the histogram buffer is than the region to be
profiled

June 10-14, 2002 DoD HPC Users Group Conference 16

PAPI 2.1 Release
• Platforms

– Linux/x86, Windows 2000
• Requires patch to Linux kernel, driver for Windows

– Linux/IA-64
– Sun Solaris/Ultra 2.8
– IBM AIX/Power

• Requires pmtoolkit (available from
http://alphaworks.ibm.com/)b

– SGI IRIX/MIPS
– Cray T3E/Unicos

• Fortran and C binding and MATLAB wrappers

June 10-14, 2002 DoD HPC Users Group Conference 17

Performance Monitoring Modes

• Counting mode
– Aggregate counts of event occurrences
– Used to measure aggregate performance

characteristics of application or system under
study

• Sampling mode
– Statistical sampling based on counter overflows
– Used to relate performance problems to

program locations

June 10-14, 2002 DoD HPC Users Group Conference 18

Performance Monitoring Modes
(cont.)

• Platforms vary in support
– SGI IRIX on MIPS R10K/12K - both
– IBM Power 3 – counting mode
– Compaq Alpha – sampling mode
– IA-64 – both

• Either mode derivable from the other

June 10-14, 2002 DoD HPC Users Group Conference 19

Example: SGI IRIX

• perfex
– Used to run a program and report “exact”

counts of any two selected events for
R10K/12K hardware counters, or to time-
multiplex all 32 countable events

• ssrun
– Run program in sampling mode to determine

where in program events are occurring

June 10-14, 2002 DoD HPC Users Group Conference 20

Example: Compaq DCPI

• Compaq (formerly Digital) Continuous Profiling
Interface

• Implemented on Alpha 21264A and later
processors

• Based on instruction sampling with random period
• Interrupts running program, selects inflight

instruction, and writes (exact) program counter
and performance register values to database

June 10-14, 2002 DoD HPC Users Group Conference 21

DCPI (cont.)

• DCPI data collection is system-wide
• DCPI database is organized by epoch,

process ID, and executable image
• Analytical tools

– dcpiprof
– dcpilist
– dcpitopcounts

June 10-14, 2002 DoD HPC Users Group Conference 22

DCPI (cont.)

Examples:
• To display number of retired instruction samples and

process cycle samples for each procedure:
dcpiprof –event cycles –pm retired <image>

• For line-by-line display of ratio of retired instructions to
replays:
dcpilist –pm retired+retired::replays <procedure> <image>

• To display instructions with highest average retire delay:
dcpitopcounts –pm valid:retdelay::valid <image>

June 10-14, 2002 DoD HPC Users Group Conference 23

Example: IA-64 PMU

• Supports access to counters in either counting or
sampling mode

• Special features
– Dedicated overflow interrupt mechanism
– Data and instruction address and opcode qualification
– Event Address Registers (EARs)
– Branch Trace Buffer (BTB) event capture

• Access through pfmon and pfmlib by Stephane
Eranian (Hewlett-Packard)

June 10-14, 2002 DoD HPC Users Group Conference 24

IA-64 PMU (cont.)

• Counting mode example:
pfmon –e cpu_cycles,ia64_inst_retired <command>

• Sampling mode example:
pfmon –smpl-period=50000 –e cpu_cycles,ia64_inst_retired <command>

June 10-14, 2002 DoD HPC Users Group Conference 25

Sources of Error

• Perturbation by counter interfaces
– Extra instructions
– System calls
– Cache pollution
– Servicing interrupts

• PC sampling smear and skew on out-of-order
processors

• Software multiplexing estimates counts from time-
sliced values

June 10-14, 2002 DoD HPC Users Group Conference 26

Perturbation Errors

• Two types of errors discovered in
microbenchmark studies
– Constant bias

• Can be compensated for

– Variable error
• Becomes insignificant if measured code is increased

to sufficient granularity so that counter interface
does not dominate

June 10-14, 2002 DoD HPC Users Group Conference 27

PC Sampling Error
• Non-constant bias
• Does not converge to expected value with greater

number of samples
• DCPI solves this problem by knowing the precise

program counter and execution history of
randomly sampled instruction (supported in
hardware).

• IA-64 provides a set of Event Address Registers
(EARs) that capture where cache and TLB misses
occur.
– Randomized choice of which load instruction is traced

June 10-14, 2002 DoD HPC Users Group Conference 28

Statistical Sampling Error

• Sample value converges to expected value
as the number of samples increases.

• Infrequent events or long sampling intervals
require longer runs to get accurate
estimates.

• Shorter sampling intervals increase
sampling overhead.

June 10-14, 2002 DoD HPC Users Group Conference 29

Overhead of PAPI read

• Overhead in cycles per read call:

98103126652615141299

MIPS R12KIBM Power3Linux/IA-64Cray T3ELinux/x86

June 10-14, 2002 DoD HPC Users Group Conference 30

Counting vs. Sampling Overheads

• EVH1 code instrumented with PAPI using
TAU runs 5-10% slower

• Reports of 7-8x slowdown with PAPI
instrumentation in tight loop on IBM
Power3, 100x slowdown on SGI

• Sampling overhead using DCPI is usually
around 0.05% but need at least 100 samples,
or 6 million cycles, for accurate results.

June 10-14, 2002 DoD HPC Users Group Conference 31

Implications for PAPI

• Use hardware support for profiling where
available

• Use programmable events to set up control blocks
and return additional information
PAPI_add_pevent
PAPI_pread

• Standardize new features
– Data and instruction address qualification
– Opcode matching
– Latency qualification/measurements

June 10-14, 2002 DoD HPC Users Group Conference 32

Implications for PAPI

• More experimental work needed to
determine tradeoffs between accuracy and
efficiency for counting vs. sampling mode
on various platforms
– New PAPI substrate for Compaq Alpha using

new DCPI
– Itanium

June 10-14, 2002 DoD HPC Users Group Conference 33

Implications for PAPI (cont.)

• Expand support for sampling mode in PAPI
beyond current PAPI_overflow,
PAPI_profil

• Handle choice between counting and
sampling mode at tool level so that users
can request performance data they want
without worrying about how to do the
instrumentation

June 10-14, 2002 DoD HPC Users Group Conference 34

Determining the Accuracy of
Event Counts - Methodology

• Design and implement microbenchmarks for
– Event count prediction
– Determination of algorithm implemented in processor

• E.g., branch prediction or cache prefetch algorithm
– Predicted event count verification

• Collect data
– Scripts permit a large number of experiments to be

performed
– Means and standard deviations computed

• Compare predicted and actual event counts
• Repeat process if necessary

June 10-14, 2002 DoD HPC Users Group Conference 35

Microbenchmarks

• Contain simple code segments
• Small when possible
• Comprised of regular patterns that permit

mathematical modeling of associated event
count

• Scalable w.r.t. granularity, i.e., number of
generated events

June 10-14, 2002 DoD HPC Users Group Conference 36

Four Classes of Errors

• Overhead Bias
• Multiplicative
• Random
• Unknown

– not predictable but verifiable
– not predictable and cannot determine veracity

• e.g., randomness in algorithm does not allow
prediction

June 10-14, 2002 DoD HPC Users Group Conference 37

When Event Counts Can Be Used
to Tune Performance

• Overhead Bias Error
– adjust counts or granularity accordingly

• Multiplicative
– adjust counts accordingly

• Random
– perform multiple experiments and verify that standard

deviation is small

• Unknown, not predictable but verifiable
– not useful for fine performance tuning but useful for

coarse tuning

June 10-14, 2002 DoD HPC Users Group Conference 38

When Event Counts Cannot Be
Used to Tune Performance

• Unknown
– vendor assistance is needed to understand what

is being counted or what algorithm is
implemented in the processor

– segregate combinations of error classes

June 10-14, 2002 DoD HPC Users Group Conference 39

Overhead Bias Error

N/AMult.
Error

31129Stores

N/A462886Loads

PentiumR12KPower3Itanium

June 10-14, 2002 DoD HPC Users Group Conference 40

Multiplicative Error
Floating Point OPs

0

20

40

60

80

100

120

6
6
0
0

1
3
2
0
0

1
9
8
0
0

2
6
4
0
0

3
3
0
0
0

3
9
6
0
0

4
6
2
0
0

5
2
8
0
0

5
9
4
0
0

6
6
0
0
0

1
3
2
0
0

1
9
8
0
0

2
6
4
0
0

3
3
0
0
0

3
9
6
0
0

4
6
2
0
0

5
2
8
0
0

5
9
4
0
0

6
6
0
0
0

1
E

+
0
6

2
E

+
0
6

3
E

+
0
6

3
E

+
0
6

7
E

+
0
6

3
E

+
0
7

7
E

+
0
7

Expected Value

%
 E

rr
o

r Itanium
Power3
R12k
Pentium II

June 10-14, 2002 DoD HPC Users Group Conference 41

Random Error

566,370782,89110% of data
–
1M accesses

1701,29090% of data
– 1M accesses

Standard
Deviation

MeanItanium L1
Data Cache
Misses

June 10-14, 2002 DoD HPC Users Group Conference 42

Unknown – Not Predictable But
Verifiable

L1 D c a c h e m i s s e s a s a f u n c t i o n o f % f i l l e d

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

0 50 100 150 200 250 300

% o f c a c he us e d

Power 3

R12k

Pentium

June 10-14, 2002 DoD HPC Users Group Conference 43

Unknown – Not Predictable and
Not Verifiable

• Branch prediction
– Algorithms used for prediction are very

complex
– Without proprietary information cannot make

predictions

June 10-14, 2002 DoD HPC Users Group Conference 44

Future Work

• Expand events and platforms studied
• Compare accuracy of sampling with that of

aggregate counts
• Determine usefulness of event counts

generated by both sampling and aggregate
counts for specific DoD applications

	Efficiency and Accuracy Issues for Sampling vs. Counting Modes of Performance Monitoring Hardware
	Outline
	Performance Monitoring Hardware
	Overview of PAPI
	PAPI Counter Interfaces
	PAPI Implementation
	PAPI Preset Events
	High-level Interface
	High-level API
	Low-level Interface
	Event set Operations
	Callbacks on Counter Overflow
	PAPI_overflow
	Statistical Profiling
	PAPI_profil
	PAPI 2.1 Release
	Performance Monitoring Modes
	Performance Monitoring Modes (cont.)
	Example: SGI IRIX
	Example: Compaq DCPI
	DCPI (cont.)
	DCPI (cont.)
	Example: IA-64 PMU
	IA-64 PMU (cont.)
	Sources of Error
	Perturbation Errors
	PC Sampling Error
	Statistical Sampling Error
	Overhead of PAPI read
	Counting vs. Sampling Overheads
	Implications for PAPI
	Implications for PAPI
	Implications for PAPI (cont.)
	Determining the Accuracy of Event Counts - Methodology
	Microbenchmarks
	Four Classes of Errors
	When Event Counts Can Be Used to Tune Performance
	When Event Counts Cannot Be Used to Tune Performance
	Overhead Bias Error
	Multiplicative Error
	Random Error
	Unknown – Not Predictable But Verifiable
	Unknown – Not Predictable and Not Verifiable
	Future Work

